How to use make_function
make_function
options
The make_function
procedure creates a runtime generated function from FD expressions. The signature for make_function
is
make_function(func_array::AbstractArray{T}, input_variables::AbstractVector{<:Node}...; in_place::Bool=false, init_with_zeros::Bool=true) where {T<:Node}
The type of the first argument, func_array
, determines the type of the array that will hold the result of evaluating the FD expressions. These are rough rules of thumb for parameter settings for maximum performance:
- If
func_array
is dense and has more than 100 elements thentypeof(func_array)
should be a subtype ofArray
within_place=true
,init_with_zeros=false
(but see caveat below) - If
func_array
is sparse (use thesparsity
function to measure this) thentypeof(func_array)
should beSparseMatrixCSC
(automatically created bysparse_jacobian
andsparse_hessian
functions) andin_place=true
. Theinit_with_zeros
argument has no effect for sparse arrays. - if
func_array
is small, less than 100 elements, thentypeof(func_array)
should be a subtype of StaticArray,in_place=false
,init_with_zeros=true
.
The type of the second argument input_variables
has no effect on performance of the runtime generated function.
If the third argument, in_place
, = false then the generated code will create and return a zero initialized array at every call. If in_place = true
the generated code has two arguments: an array to accept the result of the evaluation, and a vector of inputs. There will only be a performance advantage by setting in_place = true
if the type of func_array
is Array
or SparseMatrixCSC
.
The fourth argument, init_with_zeros
, only has an effect when in_place=true
and the type of func_array
is Array
or SArray
. If init_with_zeros = true
then the in place array argument will be initialized with zeros at each call. If it is false it will not be initialized with zeros.
This is useful when you are evaluating a function many times but not modifying the result array. You can initialize the in place array with zeros once before passing it to the runtime generated function. The runtime generated function will not alter identically zero elements so they will stay zero. Be careful though that some other function doesn't modify the in place array between calls to the runtime generated function. This could corrupt the identically zero elements.
Example: generated function returns static array
@variables x y
julia> func = SA[x^2+y,y*x,y^2]
3-element SVector{3, FastDifferentiation.Node} with indices SOneTo(3):
((x ^ 2) + y)
(y * x)
(y ^ 2)
julia> f_exe! = make_function(func,[x,y])
...
julia> f_exe!([2.0,3.0])
3-element SVector{3, Float64} with indices SOneTo(3):
7.0
6.0
9.0
Example: generated function accepts more than one vector of input arguments. This is useful if you want to segregate your input variables into groups.
x = make_variables(:x, 3)
y = make_variables(:y, 3)
f = x .* y
f_callable = make_function(f, x, y)
x_val = ones(3)
y_val = ones(3)
f_val = f_callable(x_val, y_val) #executable takes two 3-vectors as input arguments
Example: assume your result is a large dense array (> 100 elements) and that you are using an in place array with no initialization. For dense arrays this should generate the fastest code:
julia> @variables x y z
z
julia> p = [x^2 y^2; z^2 0]
2×2 Matrix{FastDifferentiation.Node}:
(x ^ 2) (y ^ 2)
(z ^ 2) 0
julia> floatp = similar(p,Float64)
2×2 Matrix{Float64}:
5.0e-324 1.08279e-311
1.5e-323 1.08279e-311
julia> fexe! = make_function(p,[x,y,z],in_place=true,init_with_zeros=false)
...
julia> fexe!(floatp,[1.0,2.0,3.0])
4.0
julia> floatp
2×2 Matrix{Float64}:
1.0 4.0
9.0 1.08279e-311
Notice that floatp[2,2]
is not 0. This is because init_with_zeros=false
. If you need this array element to be zero then initialize it before making the call to fexe!
.
You can use the sparsity
function to measure sparsity and determine whether you should use the dense or sparse derivative functions to pass as the func_array
argument.
Evaluate a function and derivatives
Sometimes you want to evaluate a function and one or more derivative orders. If you pack all the terms you want to evaluate into the argument to make_function
then common terms will be detected and only computed once. This will be generally be more efficient than evaluating the function and derivatives separately:
julia> f = [x^2*y^2,sqrt(x*y)]
2-element Vector{FastDifferentiation.Node}:
((x ^ 2) * (y ^ 2))
sqrt((x * y))
julia> jac = jacobian(f,[x,y])
2×2 Matrix{FastDifferentiation.Node}:
((y ^ 2) * (2 * x)) ((x ^ 2) * (2 * y))
((1 / (2 * sqrt((x * y)))) * y) ((1 / (2 * sqrt((x * y)))) * x)
julia> f_and_jac = make_function([vec(jac);f],[x,y])
...
julia> tmp = f_and_jac([1.1,2.1])
6-element Vector{Float64}:
9.702000000000002
0.6908492797077573
5.082000000000001
0.36187343222787294
5.336100000000001
1.5198684153570665
julia> jac_eval = reshape(view(tmp,1:4),2,2)
2×2 reshape(view(::Vector{Float64}, 1:4), 2, 2) with eltype Float64:
9.702 5.082
0.690849 0.361873
julia> f_eval = view(tmp,5:6)
2-element view(::Vector{Float64}, 5:6) with eltype Float64:
5.336100000000001
1.5198684153570665
Generating code
If you need to generate code that can be cut and pasted into another application you can use make_Expr
instead of make_function
. It has the same arguments except the in_place
and init_with_zeros
boolean arguments are not optional.
julia> @variables x y
y
julia> j = jacobian([x^2*y^2,cos(x+y),log(x/y)],[x,y])
3×2 Matrix{FastDifferentiation.Node}:
((y ^ 2) * (2 * x)) ((x ^ 2) * (2 * y))
-(sin((x + y))) -(sin((x + y)))
((1 / (x / y)) * (1 / y)) ((1 / (x / y)) * -(((x / y) / y)))
julia> in_place_no_init = make_Expr(j,[x,y],true,false)
:((result, input_variables)->begin
#= c:\Users\seatt\source\FastDifferentiation.jl\src\CodeGeneration.jl:127 =#
#= c:\Users\seatt\source\FastDifferentiation.jl\src\CodeGeneration.jl:127 =# @inbounds begin
#= c:\Users\seatt\source\FastDifferentiation.jl\src\CodeGeneration.jl:128 =#
begin
var"##431" = input_variables[2] ^ 2
var"##432" = 2 * input_variables[1]
var"##430" = var"##431" * var"##432"
result[CartesianIndex(1, 1)] = var"##430"
var"##435" = input_variables[1] + input_variables[2]
var"##434" = sin(var"##435")
var"##433" = -var"##434"
result[CartesianIndex(2, 1)] = var"##433"
var"##438" = input_variables[1] / input_variables[2]
var"##437" = 1 / var"##438"
var"##439" = 1 / input_variables[2]
var"##436" = var"##437" * var"##439"
result[CartesianIndex(3, 1)] = var"##436"
var"##441" = input_variables[1] ^ 2
var"##442" = 2 * input_variables[2]
var"##440" = var"##441" * var"##442"
result[CartesianIndex(1, 2)] = var"##440"
result[CartesianIndex(2, 2)] = var"##433"
var"##445" = var"##438" / input_variables[2]
var"##444" = -var"##445"
var"##443" = var"##437" * var"##444"
result[CartesianIndex(3, 2)] = var"##443"
end
end
end)
julia> in_place_zero_init = make_Expr(j,[x,y],true,true)
:((result, input_variables)->begin
#= c:\Users\seatt\source\FastDifferentiation.jl\src\CodeGeneration.jl:127 =#
#= c:\Users\seatt\source\FastDifferentiation.jl\src\CodeGeneration.jl:127 =# @inbounds begin
#= c:\Users\seatt\source\FastDifferentiation.jl\src\CodeGeneration.jl:128 =#
begin
var"##447" = input_variables[2] ^ 2
var"##448" = 2 * input_variables[1]
var"##446" = var"##447" * var"##448"
result[CartesianIndex(1, 1)] = var"##446"
var"##451" = input_variables[1] + input_variables[2]
var"##450" = sin(var"##451")
var"##449" = -var"##450"
result[CartesianIndex(2, 1)] = var"##449"
var"##454" = input_variables[1] / input_variables[2]
var"##453" = 1 / var"##454"
var"##455" = 1 / input_variables[2]
var"##452" = var"##453" * var"##455"
result[CartesianIndex(3, 1)] = var"##452"
var"##457" = input_variables[1] ^ 2
var"##458" = 2 * input_variables[2]
var"##456" = var"##457" * var"##458"
result[CartesianIndex(1, 2)] = var"##456"
result[CartesianIndex(2, 2)] = var"##449"
var"##461" = var"##454" / input_variables[2]
var"##460" = -var"##461"
var"##459" = var"##453" * var"##460"
result[CartesianIndex(3, 2)] = var"##459"
end
end
end)