API

FastDifferentiation.clear_cacheMethod
clear_cache()

Clears the global expression cache. To maximize efficiency of expressions the differentation system automatically eliminates common subexpressions by checking for their existence in the global expression cache. Over time this cache can become arbitrarily large. Best practice is to clear the cache before you start defining expressions, define your expressions and then clear the cache.

source
FastDifferentiation.derivativeMethod
derivative(A::AbstractArray{<:Node}, variables...)

Computes ∂A/(∂variables[1],...,∂variables[n]). Repeated differentiation rather than computing different columns of the Jacobian.

Example

julia> A = [t t^2;3t^2 5]  
2×2 Matrix{Node}:
 t              (t ^ 2)
 (3 * (t ^ 2))  5

julia> derivative(A,t)  
2×2 Matrix{Node}:
 1.0      (2 * t)
 (6 * t)  0.0

julia> derivative(A,t,t)  
2×2 Matrix{Node{T, 0} where T}:
 0.0  2
 6    0.0
source
FastDifferentiation.differentialMethod
differential(variables::Node...)

Returns an anonymous function that takes the derivative of a scalar function with respect to variables.

Example

julia> @variables t
t

julia> f = t^2
(t ^ 2)

julia> Dt = differential(t)      
#69 (generic function with 1 method)

julia> Dt(f)
(2 * t)

julia> Dt = differential(t,t)    
#69 (generic function with 1 method)

julia> Dt(f)
2
source
FastDifferentiation.hessianMethod
hessian(expression::Node, variable_order::AbstractVector{<:Node})

Returns the dense symbolic Hessian matrix.

Example

julia> @variables x y

julia> hessian(x^2*y^2,[x,y])
2×2 Matrix{FastDifferentiation.Node}:
 (2 * (y ^ 2))  (4 * (y * x))
 (4 * (x * y))  (2 * (x ^ 2))
source
FastDifferentiation.hessian_times_vMethod
hessian_times_v(term::Node, partial_variables::AbstractVector{<:Node})

Computes Hessian times a vector v without forming the Hessian matrix. Useful when the Hessian would be impractically large.

source
FastDifferentiation.if_elseFunction

Special if_else to use for conditionals instead of builtin ifelse because the latter evaluates all its arguments. Many ifelse statements are used as guards against computations that would cause an exception so need a new version that is transformed into

condition ? true_branch : false_branch

during code generation.

source
FastDifferentiation.jacobianMethod
jacobian(
    terms::AbstractVector{<:Node},
    partial_variables::AbstractVector{<:Node}
)

Jacobian matrix of the n element function defined by terms. Each term element is a Node expression graph. Only the columns of the Jacobian corresponsing to the elements of partial_variables will be computed and the partial columns in the Jacobian matrix will be in the order specified by partial_variables. Examples:

julia> @variables x y

julia> jacobian([x*y,y*x],[x,y])
2×2 Matrix{Node}:
 y  x
 y  x

julia> jacobian([x*y,y*x],[y,x])
2×2 Matrix{Node}:
 x  y
 x  y

julia> jacobian([x*y,y*x],[x])
2×1 Matrix{Node}:
 y
 y
source
FastDifferentiation.jacobian_times_vMethod
jacobian_times_v(
    terms::AbstractVector{<:Node},
    partial_variables::AbstractVector{<:Node}
)

Returns a vector of Node, where each element in the vector is the symbolic form of Jv. Also returns v_vector a vector of the v variables. This is useful if you want to generate a function to evaluate Jv and you want to separate the inputs to the function and the v variables.

source
FastDifferentiation.jacobian_transpose_vMethod
jacobian_transpose_v(
    terms::AbstractVector{<:Node},
    partial_variables::AbstractVector{<:Node}
)

Returns a vector of Node, where each element in the vector is the symbolic form of Jᵀv. Also returns v_vector a vector of the v variables. This is useful if you want to generate a function to evaluate Jᵀv and you want to separate the inputs to the function and the v variables.

source
FastDifferentiation.make_ExprMethod
make_Expr(
    A::SparseMatrixCSC{<:Node,<:Integer},
    input_variables::AbstractVector{<:Node},
    in_place::Bool, init_with_zeros::Bool
)

init_with_zeros argument is not used for sparse matrices.

source
FastDifferentiation.make_functionMethod
make_function(
    func_array::AbstractArray{<:Node},
    input_variables::AbstractVector{<:Node}...;
    in_place::Bool=false, init_with_zeros::Bool=true
)

Makes a function to evaluate the symbolic expressions in func_array. Every variable that is used in func_array must also be in input_variables. However, it will not cause an error if variables in input_variables are not variables used by func_array.

julia> @variables x
x

julia> f = x+1
(x + 1)


julia> jac = jacobian([f],[x]) #the Jacobian has a single constant element, 1, and is no longer a function of x
1×1 Matrix{FastDifferentiation.Node}:
 1

 julia> fjac = make_function(jac,[x])
 ...
 
 julia> fjac(2.0) #the value 2.0 is passed in for the variable x but has no effect on the output. Does not cause a runtime exception.
 1×1 Matrix{Float64}:
  1.0

If in_place=false then a new array will be created to hold the result each time the function is called. If in_place=true the function expects a user supplied array to hold the result. The user supplied array must be the first argument to the function.

julia> @variables x
x

julia> f! = make_function([x,x^2],[x],in_place=true)
...

julia> result = zeros(2)
2-element Vector{Float64}:
 0.0
 0.0

julia> f!(result,[2.0])
4.0

julia> result
2-element Vector{Float64}:
 2.0
 4.0

If the array is sparse then the keyword argument init_with_zeros has no effect. If the array is dense and in_place=true then the keyword argument init_with_zeros affects how the in place array is initialized. If init_with_zeros = true then the in place array is initialized with zeros. If init_with_zeros=false it is the user's responsibility to initialize the array with zeros before passing it to the runtime generated function.

This can be useful for modestly sparse dense matrices with say at least 1/4 of the array entries non-zero. In this case a sparse matrix may not be as efficient as a dense matrix. But a large fraction of time could be spent unnecessarily setting elements to zero. In this case you can initialize the in place Jacobian array once with zeros before calling the run time generated function.

source
FastDifferentiation.make_variablesMethod

makevariables(name::Symbol,arraysize::T...)

Returns an Array of variables with names corresponding to their indices in the Array.

Example:

julia> make_variables(:x,3)
3-element Vector{FastDifferentiation.Node}:
 x1
 x2
 x3

julia> make_variables(:x,2,3)
2×3 Matrix{FastDifferentiation.Node}:
 x1_1  x1_2  x1_3
 x2_1  x2_2  x2_3

julia> make_variables(:x,2,3,2)
2×3×2 Array{FastDifferentiation.Node, 3}:
[:, :, 1] =
 x1_1_1  x1_2_1  x1_3_1
 x2_1_1  x2_2_1  x2_3_1

[:, :, 2] =
 x1_1_2  x1_2_2  x1_3_2
 x2_1_2  x2_2_2  x2_3_2
source
FastDifferentiation.sparse_hessianMethod
sparse_hessian(expression::Node, variable_order::AbstractVector{<:Node})

Compute a sparse symbolic Hessian. Returns a sparse matrix of symbolic expressions. Can be used in combination with make_function to generate an executable that will return a sparse matrix or take one as an in-place argument.

Example

julia> @variables x y

julia> a = sparse_hessian(x*y,[x,y])
2×2 SparseArrays.SparseMatrixCSC{FastDifferentiation.Node, Int64} with 2 stored entries:
 ⋅  1
 1  ⋅

julia> f1 = make_function(a,[x,y])
...

julia> f1([1.0,2.0])
2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 2 stored entries:
  ⋅   1.0
 1.0   ⋅

julia> tmp = similar(a,Float64)
2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 2 stored entries:
  ⋅            4.24399e-314
 4.24399e-314   ⋅

julia> f2 = make_function(a,[x,y],in_place=true)
...

julia> f2(tmp, [1.0,2.0])
2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 2 stored entries:
  ⋅   1.0
 1.0   ⋅

julia> tmp
2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 2 stored entries:
  ⋅   1.0
 1.0   ⋅
source
FastDifferentiation.sparse_jacobianMethod
sparse_jacobian(
    terms::AbstractVector{<:Node},
    partial_variables::AbstractVector{<:Node}
)

Returns a sparse array containing the Jacobian of the function defined by terms

source
FastDifferentiation.sparsityMethod
sparsity(sym_func::AbstractArray{<:Node})

Computes a number representing the sparsity of the array of expressions. If nelts is the number of elements in the array and nzeros is the number of zero elements in the array then sparsity = (nelts-nzeros)/nelts.

Frequently used in combination with a call to make_function to determine whether to set keyword argument init_with_zeros to false.

source